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Garibaldi, the state marine fish of California, is just one of the great diversity of species supported by the sanctuary Photo: Claire Fackler/NOAA 

Our Changing Ocean 

The impacts of climate change are intensifying both globally and locally, threatening America’s physical,    

social, economic, and environmental well-being1. National marine sanctuaries and marine national 

monuments must contend with rising water temperatures and sea levels, water that is more acidic and contains 

less oxygen, shifting species, and altered weather patterns and storms1. While all of our sanctuaries and  

national monuments must face these global effects of climate change, each is affected differently.  

Channel Islands National Marine Sanctuary 

Channel Islands National Marine Sanctuary protects 1,470 square miles of ocean around five of southern 

California’s Channel Islands, surrounding and partially overlapping Channel Islands National Park. Established 

in 1980, the sanctuary protects vibrant ecosystems from kelp forests to deep sea coral gardens. These waters 

provide habitat for ecologically, economically, and culturally important species like market squid and rock 

crab, while hosting a number of endangered species from abalone to whales. The sanctuary supports a variety 

of recreational uses, supports prime commercial fishing grounds, and is a place of important cultural heritage, 

protecting over 150 historic shipwrecks and containing waters of immeasurable value to the Chumash people. 

Ocean Acidification 

About 30% of the carbon dioxide (CO2) released into the atmosphere by humans is absorbed by the ocean,2 

causing a chemical reaction that leads to ocean waters becoming more acidic. Globally, the ocean has become 

30% more acidic since the beginning of the industrial revolution.3,4 In many areas of California, acidification is 

exacerbated by upwelling. Cool, nutrient-rich 

upwelled water fertilizes the region’s ecosystems but 

is more acidic than surface waters. Due in part to the 

influence of upwelling, which is expected to increase 

in intensity in the coming century,5,6 the acidity of 

California’s waters has increased by up to 60% since 

1895 and will continue to rise.7,8  

Increasingly acidic waters make it difficult for 

organisms like rock crab and deep water coral to make 

and maintain stony skeletons and shells. Deep water 

corals, which provide important habitat for many  Deep sea coral communities in the sanctuary are threatened by ocean 

acidification. Photo: NOAA 
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Case Study 1—Harmful Algal Blooms 

Chlorophyll levels, a measure of algae growth, along the U.S. west 

coast before (left) and during (right) the 2015 harmful algal bloom. 

Photo: ONMS 2019,27 adapted from McCabe et al. 2016.22 

Harmful algal blooms (HABs) produce toxins that can 

harm animals and humans. These toxins are 

produced by phytoplankton that are eaten by 

zooplankton and small fish, which are in turn prey for 

larger animals. In this way, toxins work their way up 

the food web and can sicken or kill animals and 

poison seafood. In recent decades, HABs on the 

west coast of North America have been responsible 

for mass mortalities of seabirds,
22

 whales,
22-24

 and 

other marine mammals,
22,24,25

 as well as closures 

and delays of valuable fisheries such as Dungeness 

crab and rock crab.
22,26,27 

Climate change is altering 

the frequency and intensity of these natural disasters 

along the entire west coast. The Santa Barbara 

Channel has been a known hot spot for HABs since 

1998.
27

 Increasing water and air temperatures create 

conditions that may favor larger, longer lasting 

HABs,
28,29

 and ocean acidification may cause 

phytoplankton to produce more toxins, leading to 

blooms that are more toxic.
30

 Further, projected 

increases in storm intensity and extreme rainfall 

events could lead to increases in coastal runoff 

events that introduce large loads of nutrients into the 

ocean, sustaining blooms and potentially increasing 

their toxicity.
31,32 

As climate change progresses, 

HABs are likely to increase in size, intensity, and 

frequency with widespread potential impacts for the 

ecology and economy of the west coast.  
Spiny lobsters are vulnerable to ocean acidification but may find refuge 

within the sanctuary. Photo: Claire Fackler/NOAA 

species,9 are particularly vulnerable as deeper habitats 

are naturally more acidic than surface waters.9 The low 

oxygen and high acidity conditions of the sanctuary's 

deep waters are at the edge of suitable conditions for 

some corals to grow and survive.9,10 Some areas are 

already acidic enough to slow coral growth and cause 

their skeletons to dissolve.9  

Acidification also affects other species. Increasing 

acidity could reduce breeding habitat for market 

squid11 while increasing stress and decreasing larval 

survival in rockfish and other species.12-16 The prey of 

fish, seabirds, and marine mammals may also be 

impacted.17-19 More acidic waters could affect 

zooplankton with consequences for the entire food 

web from corals and rock crabs to seabirds and 

whales. For example, past decreases in zooplankton 

have reduced the number of fish in the sanctuary.20  

Preliminary research suggests that the northern shores 

of the northern Channel Islands may provide some 

partial refuge from acidification because they 

experience high-acidity conditions less frequently.21 

The east-west orientation of the coast in this area and 

shallower depths of the Santa Barbara Channel reduce 

local upwelling compared to elsewhere in California.21 

As water upwelled north of Point Conception flows 

south, it becomes less acidic while bathing the islands 

with nutrients, allowing them to receive the benefits of 

upwelling without as much increased acidity.21 

Therefore, some portions of the sanctuary experience 

relatively lower acidity within a rapidly acidifying 

region, and may provide a local refuge to organisms 

that are vulnerable to ocean acidification.21 
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 Case Study 2—Kelp Forests and Climate Change 

The vibrant kelp forests of the sanctuary are home to 

over 1,000 ecologically, economically, and culturally 

important species including sheephead, spiny lobster, 

and abalone. Kelp forests also act as “blue carbon” 

ecosystems. As kelp grows, it stores carbon in its 

structures and as pieces break off, they can float up to 

150 miles offshore.
33

 Tens of thousands of tons of kelp 

is transported through offshore canyons to the deep sea 

each year, where it can be buried for millennia.
34,35

 

Globally, kelp and other macroalgae could sequester up 

to 200 million tons of carbon annually,
34

 13% more than 

the annual emissions of Los Angeles.
36

 

Warming waters can reduce kelp survival and 

reproduction,
37,38

 and kelp can be removed by the strong 

waves and currents associated with El Niño and 

extreme weather events,
37

 which are both projected to increase in frequency and intensity.
39

 Kelp can also be 

impacted by ecological changes that may be triggered by climate change, like sea urchin population booms.
40 

Despite these threats, when compared to kelp elsewhere in California, the kelp forests of the Channel Islands 

appear more resilient to climate change.
 
The reproduction of kelp in the sanctuary is more resilient to high 

temperatures
38

 and while kelp forests in the sanctuary did show some die-off during the warm water anomalies 

of 2013-2016, they regrew more quickly and more completely than those to the north and south.
37

 The ability 

of Channel Islands kelp to better survive, recover from, and reproduce in high temperatures could increase the 

adaptation of kelp throughout California through the spread of resilient kelp from the sanctuary.
38

 Given their 

apparent resilience to climate change, kelp forests in the sanctuary are an important habitat not only for the 

ecology and economy of the region, but for mitigating the impacts of climate change on the California coast. 

Blue and olive rockfish are some of the more than 1,000 species 

found in Channel Island kelp forests. Photo: Yasmeen Smalley/NPS 

The vibrant kelp forests of the Channel Islands are particularly resilient to climate change. Photo: Robert Schwemmer/NOAA 
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Increasing Water Temperatures 

Average ocean temperature is rising world-

wide.1 Water temperatures in the sanctuary 

increased slightly over the past century,1,41 

and could warm up to 7oF by 2100.42 In 

addition to rising average temperatures, 

warm water anomalies are expected to 

increase in frequency and intensity.43 

Rising temperatures and warm water 

anomalies can cause mortality events of 

intertidal species, and could create 

conditions that are too warm for some deep 

water corals.44 Higher temperatures are also 

expected to lead to more frequent and 

intense HABs,26,29 and have caused changes 

in nutrients and zooplankton that alter the 

food web.45-48 Warmer waters also hold less 

oxygen. Oxygen in California marine 

waters has decreased 20% since 198049,50 

and may fall below the range of natural 

variability by 2030.1,51 Lower oxygen could 

decrease rockfish habitat in the sanctuary by 

50%,12 reduce breeding habitat for market 

squid,11 and impact deep water corals.52  

Warming waters also encourage species to 

move north or deeper to cooler waters.53 

Southern species, like Humboldt squid and 

brown booby, could become more common 

in the sanctuary while others, like market 

squid, may become less abundant.34,42,54 

These shifts are particularly relevant to the 

sanctuary as the confluence of warm and 

cool currents results in the western islands 

hosting a community of cool water species 

while the eastern islands host warm water 

species.55,56 The transition point between 

these communities is sensitive to changes in 

temperature. In the 1970s, warming waters 

caused a change in the marine community 

of Santa Cruz Island along with a decrease 

in the number of fish due to reduced 

zooplankton prey.20 A similar shift towards 

a warm water community occurred during 

the 2013-2016 warm water anomalies.57 

Such changes to ecological communities are 

expected to continue as waters warm.57 

The sanctuary protects a great diversity of life, much of which could be affected by climate 

change. Species IDs (top to bottom): Black and yellow rockfish, Spanish shawl 

nudibranch, blue whales. Photo: Claire Fackler/NOAA; Claire Fackler/NOAA; Jessica 

Morten/NOAA 
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Changing Oceanographic Processes 

Globally, climate change is altering large scale 

oceanographic processes such as ocean currents, 

atmospheric circulation, and El Niño.39,58,59 These 

changes can have direct impacts on the sanctuary.  

Oceanic currents are of particular importance to the 

Channel Islands ecosystem. The interaction of the 

warm Davidson Current and cool California Current 

creates a high-diversity ecological transition in the 

sanctuary.55,56 While it is uncertain if climate 

change will alter these currents, changes could have 

impacts on sanctuary ecosystems. 

During El Niño events, the region of the sanctuary 

experiences large waves, wet conditions, reduced 

upwelling, and warmer water.60,61 These effects could intensify in the future as the frequency and intensity of El 

Niño events are expected to increase.39 Climate change is also projected to cause increases in the winds that 

drive upwelling.6 Overall, despite periodic decreases during El Niño, this is expected to increase the frequency 

and intensity of upwelling in the coming century, which could exacerbate the impacts of ocean acidification.5,6 

Changes to atmospheric circulation also affect the sanctuary. In 2013, an area of unusually high pressure south 

of the Gulf of Alaska led to the formation of a coast-wide marine heatwave.62,63 In the sanctuary, this led to the 

2013-2016 warm water event with ocean temperatures up to 11oF above normal,64 causing many species, like 

market squid, to move northward,45,46,54 fueling a large HAB,46 and reducing zooplankton prey.45,46 

Rising Ocean Waters 

Numerous factors contribute to 

rising global sea levels including 

melting glaciers and thermal 

expansion of seawater. Factors such 

as currents and changing land height 

cause sea level to rise at different 

rates in different locations.1,65 Along 

the mainland shoreline in the region 

of the sanctuary, sea level has been 

rising at about 1.2 inches per 

decade66 and could rise another 2 

feet in the next 50 years.67 

Although it’s unclear how this 

projection will affect the Channel 

Islands, sea level rise could drown 

beaches and rocky intertidal habitats. This could inundate critical nesting, pupping, and haul-out habitat for 

mammals, such as northern elephant seals and California sea lions, and sea birds like the western snowy 

plover.68 However, the lack of development on the islands will likely allow many of these habitats to move up 

shore. Rising sea level also reduces intertidal habitat for mussels, oysters, and other intertidal species by 

exposing them to more predation from oceanic predators at the same time that warming air temperatures limit 

their ability to move higher in the intertidal zone. Further, deeper waters could “drown” eelgrass meadows, by 

reducing available light, shrinking this ecologically important habitat that sequesters carbon.69 Rising waters 

could also increase coastal erosion in combination with projected increases in storm and wave intensity.70,71 

The habitats of many species in the sanctuary, such as northern elephant seals, could be 

degraded by sea level rise. Photo: Robert Schwemmer/NOAA 

The diverse ecological communities of the sanctuary could be impacted by 

changes to ocean currents. Photo: NOAA 
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Teacher workshops are an integral part of the sanctuary’s climate change outreach and education activities. Photo: Laura Francis/NOAA 

What is Being Done? 

To gain a better understanding of how conditions are changing, NOAA scientists track climate indicators such 

as water temperature and acidity. They have also developed indicators to track changes in ecological 

communities, such as monitoring of deep sea corals. Sanctuary staff have also established and enhanced 

partnerships with other researchers at NOAA, the University of California Santa Barbara, the U.S. National Park 

Service, and others to research and address the impacts of climate change in the region. Detecting, assessing, 

and tracking the impacts of climate change was also a clear theme throughout the sanctuary's 2016 Condition 

Report. Building on that report, in 2020 NOAA staff began developing an updated sanctuary management plan. 

As supported by the condition report, public comments,  and advisory council input, the new plan is expected to 

include a climate change action plan. 

Recognizing the importance of sharing this important information, NOAA has also developed a regional an 

educational website that teachers can use to help students gain a better understanding of ocean acidification. 

Through this website, teacher workshops, volunteer trainings, and outreach demonstrations, NOAA is 

increasing public understanding and awareness of the impacts of climate change. 

https://sanctuaries.noaa.gov/science/condition/cinms/
https://sanctuaries.noaa.gov/science/condition/cinms/
https://channelislands.noaa.gov/manage/plan/revision.html


To view the full report online visit: https://sanctuaries.noaa.gov/management/climate/impact-profiles.html     
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